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Mn(II)-Oxidizing Bacteria Are Abundant And 
Environmentally Relevant Members Of Ferromanganese 
Deposits In Caves Of The Upper Tennessee River Basin
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Abstract
The upper Tennessee River Basin contains the highest density of our nation’s caves; yet, little is known 
regarding speleogenesis or Fe and Mn biomineralization in these predominantly epigenic systems. Mn:Fe 
ratios of Mn and Fe oxide-rich biofilms, coatings, and mineral crusts that were abundant in several 
different caves ranged from ca. 0.1 to 1.0 as measured using ICP-OES. At sites where the Mn:Fe ratio 
approached 1.0 this represented an order of magnitude increase above the bulk bedrock ratio, suggesting 
that biomineralization processes play an important role in the formation of these cave ferromanganese 
deposits. Estimates of total bacterial SSU rRNA genes in ferromanganese biofilms, coatings, and crusts 
measured approximately 7×107–9×109 cells/g wet weight sample. A SSU-rRNA based molecular survey of 
biofilm material revealed that 21% of the 34 recovered dominant (non-singleton) OTUs were closely 
related to known metal-oxidizing bacteria or clones isolated from oxidized metal deposits. Several 
different isolates that promote the oxidation of Mn(II) compounds were obtained in this study, some from 
high dilutions (10–8–10–10) of deposit material. In contrast to studies of caves in other regions, SSU 
rRNA sequences of Mn-oxidizing bacterial isolates in this study most closely matched those of 
Pseudomonas, Leptothrix, Flavobacterium, and Janthinobacterium. Combined data from geochemical 
analyses, molecular surveys, and culture-based experiments suggest that a unique consortia of Mn(II)-
oxidizing bacteria are abundant and promoting biomineralization processes within the caves of the upper 
Tennessee River Basin.

Mary J. Carmichael, Sarah K. Carmichael, Cara M. Santelli, Amanda Strom, And Suzanna L. Brauer (2013) 
"Mn(II)-Oxidizing Bacteria Are Abundant And Environmentally Relevant Members Of Ferromanganese 
Deposits In Caves Of The Upper Tennessee River Basin".  Geomicrobiology Journal.  30(9): 779-800 (October 
2013).  [ISSN: 1521-0529]  [DOI: 10.1080/01490451.2013.769651] Version Of Record Available At Taylor And 
Francis (tandfonline.com)



Introduction

Within the continental United States, carbonate bedrock un-
derlies 20% of the land area east of the Mississippi River, 
forming an intricate karst hydrologic network with numer-
ous caves (Christman and Culver 2001; White et al. 1995). As 
such, the southern Appalachians contain numerous caves: of 
the 50,000 cave systems known to exist in the United States, ca. 
14% occur within the state of Tennessee (Barton and Jurado 
2007). However, to date only a few studies describe the micro-
bial communities of Appalachian cave systems (Angert et al. 
1998; Campbell et al. 2011; Engel et al. 2001; Shapiro and 
Pringle 2010; Simon et al. 2003), and none of these address

in a significant way the geomicrobiology of an epigenic cave
system, which is the primary method of speleogenesis in cave
and karst systems worldwide (White et al. 1995).

Ferromanganese deposits are quite common in caves in 
the southern Appalachians. However, our knowledge of the 
microbial consortia associated with cave ferromanganese de-
posits is limited to research conducted in cave systems lo-
cated in the southwest United States (Cunningham et al. 1995; 
Northup et al. 2003; Spilde et al. 2005, 2006), which formed 
via hypogene speleogensis (characteristically deeper cave for-
mation via sulfuric acid in ascending groundwater) rather than 
epigene speleogensis (typically shallow cave formation via car-
bonic acid in descending meteoric water). Therefore questions 
remain unanswered regarding 1) the nature of these shallow, 
epigenic cave systems in the southern Appalachians, 2) how 
similar these shallow cave systems are to their deeper, hy-
pogene counterparts and 3) to what extent surface waters and 
biota influence microbial consortia and biomineralization pro-
cesses within shallow cave systems. Answers to these questions 
require basic exploratory efforts in order to generate hypothe-
ses that provide a framework and direction for future research



endeavors. This point is particularly salient regarding research
within understudied environments, such as the cave systems
of the southern Appalachians.

The formation of cave mineral deposits and speleothems
was long thought to be controlled primarily by abiotic pro-
cesses as a result of microsite environmental conditions (e.g.,
temperature, pH, solution chemistry), and changes in redox
conditions (Barton and Northup 2007; Engel et al. 2004;
Northup and Lavoie 2001). However, more recent geomicro-
biology research lends support to the hypothesis that microbes
play a role in the formation and dissolution of cave mineral de-
posits via direct and indirect metabolic activities and biomin-
eralization processes (Barton and Luiszer 2005; Cañaveras
et al. 2006; Jones 2001; Melim et al. 2001; Northup et al. 1997;
de los Rı́os et al. 2011; Spilde et al. 2005; Taboroši 2006). In
particular, microbial reactions have been shown to promote
the formation of cave manganese oxide and ferromanganese
(mixed Fe and Mn oxides) deposits, such as crusts (Northup
et al. 2000, 2003; Spilde et al. 2005), manganese flowstones
(Gradziński et al. 1995), rock coatings (Allouc and Harmelin
2001; Peck 1986), and manganese stromatolites (Rossi et al.
2010).

Cave ferromanganese deposits may contain Mn oxide, Mn
hydroxide, and Mn oxyhydroxide minerals (collectively re-
ferred to hereafter as Mn oxides), and the mineralogy of these
deposits can be quite complex (Onac and Forti 2011; Post
1999; White et al. 2009). The oxidation of Mn(II) to Mn(III)
or Mn(IV) is kinetically inhibited in the absence of a catalyst
at near-neutral pH of most environments. Microorganisms
are known to catalyze the oxidation of Mn(II) compounds,
increasing reaction rates up to five orders of magnitude rel-
ative to abiotic oxidation rates (Nealson et al. 1988; Dixon
and Skinner 1992; Francis and Tebo 2002). Therefore, rapid
Mn(III/IV) oxide depositional rates, especially those which
exceed predicted abiotic reaction rates in a given environment,
are a strong indication of microbial involvement in deposit
formation (Nealson et al. 1988).

Mn oxide minerals have highly charged surfaces and are
biogeochemically active, demonstrating the ability to degrade
humic substances (Sunda and Kieber 1994), scavenge reac-
tive oxygen species (Archibald and Fridovich 1981; Daly et al.
2004; Ghosal et al. 2005; Learman et al. 2011), concentrate
rare earth elements (Onac et al. 1997), and influence trace
metal bioavailability (Nelson et al. 1999; Post 1999; Kay et al.
2001; Manceau et al. 2002; Villalobos et al. 2005; Toner et al.
2006) and speciation (Fendorf et al. 1992; White et al. 2009).
Biogenic oxides, which tend to have higher percentages of va-
cancies and smaller particle sizes (Learman et al. 2011; Webb
et al. 2005), demonstrate an increased sorptive capacity rela-
tive to abiotically produced oxides (Nelson et al. 1999). There-
fore, biogenic Mn oxides may exert a greater impact on local
geochemistry than abiotically generated deposits.

In this study, we examined the geomicrobiology of ferro-
manganese deposits in an epigene cave system located in the
cave-rich but poorly studied southern Appalachian karst re-
gion. Using a combination of molecular-based SSU rRNA
analysis and culture-based methodologies, we demonstrate
that several different species of Mn(II)-oxidizing bacteria are
abundant and promoting biomineralization processes within

the caves. Molecular evidence from the primary study site,
Carter Saltpeter Cave, suggests that the Mn-oxidizing micro-
bial consortia in ferromanganese deposits within shallow cave
systems harbor a unique signature when compared to similar
deposits in deep cave systems located within the southwest
United States.

Methods

Field Description

The study area (Figure 1, inset) is comprised of several epi-
genic caves, all located in the Ordovician Knox Group (Oder
1934) within the upper Tennessee River Basin. The primary
study site, Carter Saltpeter Cave (Carter County, TN, Fig-
ure 1), herein referred to as CSPC, is a shallow cave system at
a depth of approximately 30 m. It is an epigenic cave system
typical of those found within the Appalachian region, and
evidence of anthropogenic impact is widespread throughout
the system. Rockhouse Cave (R) is located less than 2 km east
of CSPC, and the two systems are hydrologically connected
(Gao et al. 2006a, 2006b). Worley’s Cave, located 24 km north-
east of CSPC in Sullivan County, TN, is frequently visited by
humans and contains a subterranean creek system that exits
the cave and flows to the south fork of the Holstein River.
Recent work (Y. Gao, unpublished data) has demonstrated
that Worley’s cave is hydrologically connected to sinkholes in
nearby farm fields and therefore may be susceptible to agri-
cultural runoff. In contrast to these three anthropogenically
impacted caves, Daniel Boone Caverns (herein referred to as
DBC) in Scott County, VA is gated and access is controlled
by the landowner. Therefore, this cave is rarely visited. DBC
is located in an isolated forest location on the top of a ridge
and is not subject to agricultural or municipal runoff. It con-
tains several pools and drip networks, but does not have an
extensive subsurface hydrologic system.

Sample Collection

Samples (Table 1) were collected periodically, in roughly
three month intervals, from July 2009 to September 2011 in
four cave systems. Ferromanganese deposits were identified
as black/chocolate brown biofilms, coatings, or mineral-rich
crusts that coat cave walls and speleothems. Deposits were
screened for the presence of Mn oxides using 0.04% Leucober-
bein Blue (LBB), a redox indicator that is oxidized by Mn(III)
or Mn(IV) to produce a bright blue color change (Krumbein
and Altmann 1973). LBB tests were conducted by scraping
the deposit surface using Whatman chromatography paper,
flushing the sample with LBB, and looking for the production
of the color change described above. Deposit morphology was
highly variable within systems (Figure 2), with LBB-positive
samples collected from biofilms, ferromanganese coatings and
crusts, and ferromanganous micronodules. Samples were col-
lected aseptically by scraping the deposit surface, placed in a
cooler on ice or dry ice and transported back to the lab for im-
mediate plating/inoculation (for culturing), DNA extraction
(for clone libraries and qPCR), or fixation (for microscopy).



Fig. 1. Maps of the primary study sites: Carter Saltpeter Cave, Rockhouse Cave, and Worley’s Cave. A map of Daniel Boone Caverns
was not available at the time of this writing. Sampling locations are labeled with hash marks. Regional map inset shows the relative
location of all four cave systems that are included in this study. Carter Saltpeter Cave survey conducted on February 8, 1981 by L.
Adams, R. Knight, R. Page, and T. Wilson. Rockhouse Cave survey conducted on May 6, 1980 by L. Adams, T. Gingrich, and D.
Nelms. Worley’s Cave survey conducted from December 22, 1971 - August 8, 1973 by M. Adams, T. Anderson, C. Booth, R. Bowery,
J. Cox, T. Harrison, D. Mire, A. Powers, D. Powers, and J. Powers. All cave maps adapted by S.K. Carmichael (color figure available
online).



Table 1. A descriptive summary of samples obtained from cave ferromanganese deposits in this study

Ferromanganese Deposit
Sample Morphology Analyses Conducted

Dinosaur Cove (CSPC)a Coating ICP-OES, qPCR, EM
Dinosaur Cove Mud (CSPC)a Coating ICP-OES, EM
Dinosaur Cove Popcorn (CSPC)a Micronodule ICP-OES, EM
Mn Falls (CSPC)a Thick biofilm Clone library construction, Cultures, ICP-OES, qPCR,

EM
Mud Trap Falls (CSPC) Coating Clone library construction, Cultures, in-situ glass-slide

cultivation, EM, qPCR
Watermark (CSPC) Coating ICP-OES, qPCR, EM
Top of V (DBC) Coating Cultures, in-situ glass-slide cultivation, EM
Hang Out (R) Biovermiculation qPCR
Dolomite w/ Crust (W) Crust qPCR
Mn Chamber (W)a Crust ICP-OES, EM
Ribbon Rock (W)a Crust ICP-OES, qPCR, EM
River Bank (W)a Crust ICP-OES
Weathered Ribbon Rock (W)a Crust ICP-OES, qPCR, EM

aDenotes a sample where the Mn:Fe ratio is enriched relative to the average Mn:Fe ratio for the bedrock in the region (Table 2).
Cave locations are abbreviated as follows: Carter Saltpeter Cave (CSPC), Daniel Boone Caverns (DBC), Rockhouse Cave (R), and Worley’s Cave (W).
Analyses conducted are abbreviated as follows: Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), real-time quantitative PCR (qPCR),
and electron microscopy (EM).

Field samples for electron microscopy were fixed in the field
using gluteraldehyde with sodium phosphate buffer.

Geochemistry and Biogeochemistry

A subset of cave ferromanganese samples were analyzed at
Appalachian State University to determine substrate mineral-
ogy using a Shimadzu 6000 powder X-ray diffractometer with
a Cu X-ray source and measured from 5–80◦ 2θ . Species were
identified using the PDF/4+ Minerals Database. A subset of
samples were collected for metal analyses in December 2009
(Worley’s Cave) and January 2010 (CSPC), lyophilized over
a 48 hour period, then digested for metal analyses following
US EPA SW846 Method 3051A: Microwave Assisted Acid
Digestion of Sediments, Sludges, Soils, and Oils (Link et al.
1998; SW-846 EPA Method 3051A 2007). Elemental analy-
sis was performed in duplicate on several rock, coating, and
biofilm samples to determine total Mn and Fe content using a
Varian 710-ES Inductively Coupled Plasma-Optical Emission
Spectrometer (ICP-OES).

Real-time Quantitative PCR

Ten samples from three cave systems were analyzed using real-
time quantitative PCR to quantify the relative abundance of
Archaea and Bacteria in the CSPC, Rockhouse, and Wor-
ley’s cave systems. Primers were selected for each domain that
demonstrated broad coverage over the 16S rRNA region. The
forward primer 338F 5′-TCCTACGGGAGGCAGCAGT-
3′ (Nadkarni et al. 2002) was paired with the reverse
primer 518R 5′-ATTACCGCGGCTGCTGG-3′ (Einen et al.
2008) to target the bacterial 16S rRNA gene sequence.
The primer pair 967F 5′-AATTGGCGGGGGAGCAC-3′ /
1060R 5′-GGCCATGCACCWCCTCTC-3′ (Cadillo-Quiroz

et al. 2006) was selected to target the archaeal 16S rRNA
gene sequence. Amplifications were performed in triplicate
on an Applied BiosystemsTM 7300 Real-Time PCR System
(Carlsbad, CA) using MaximaTM SYBR Green/ROX qPCR
Master Mix (Fermentas, Glen Burnie, MA) with 2 ng sam-
ple DNA/well. Calibration curves for quantification were
generated using one of the following standards: 1) plasmid
DNA containing the SSU rRNA gene from Rhodobacter sp.
CR07–74 (Bacteria, range of 102–109 target copies/μL) or
2) genomic DNA extracted using the Qiagen DNeasy Blood
and Tissue Kit (Valencia, CA) from Methanoregula boonei
6A8 (Archaea, range of 102–107 target copies/μL). Circular
plasmid DNA standards have been reported to cause overes-
timation of sample cell number using quantitative PCR (Hou
et al. 2010). To circumvent this potential issue, plasmid DNA
standards were lineraized by restriction digest using BssHII
(New England BioLabs, Ipswich, MA). rRNA operon copy
numbers in bacterial cells are variable (Fogel et al. 1999)
and change based on environmental conditions (Klappenbach
et al. 2000). Therefore, SSU rRNA gene copy number was nor-
malized in experimental results using the average copy number
for Archaea (1.07 copies/cell) and Bacteria (4.08 copies/cell)
as reported by the Ribosomal RNA Operon Copy Number
Database (Klappenbach et al. 2001) in March, 2010.

Fluorescence Direct Counts

Fluorescence direct counts were performed on samples from
Mn Falls and Mud Trap Falls (CSPC) to validate real-time
quantitative PCR results. Upon receipt in the lab, 0.1 g (wet
weight) of biofilm material was mixed 1:10 w/v with 0.1%
(final concentration) sodium pyrophosphate (Na4P2O7.10
H2O) and vortexed for ten minutes to disrupt cell clumps
and homogenize the material. Samples were fixed in a 4%



Fig. 2. Examples of ferromanganese deposit types found in the upper Tennessee River Valley karst network: a) coatings on cave coral
at Dino Cove (CSPC); b) coatings on massive nontronite clay deposits (DBC); c) coatings on 5 cm thick calcite layers within cave
walls (DBC); d) biofilm associated with a groundwater seep at Mn Falls (CSPC); e) coating associated with a groundwater seep at
Mud Trap Falls (CSPC); f) coatings on calcite layers within cave walls show LBB+ signature (DBC); and g) biovermiculations (R).
Cave systems are abbreviated as follows: Carter Saltpeter Cave (CSPC), Daniel Boone Caverns (DBC), and Rockhouse Cave (R)
(color figure available online).

paraformaldehyde solution and stored at 4◦C overnight. Sam-
ples were then re-suspended by vortexing, and a 5 μL sample
was then applied to a slide and evenly spread over 484 mm2

surface area. Samples were stained with 1 μg/mL (final con-
centration) DAPI (4,6-diamino-2-phenylindole), and Citiflour
Antifadent Mounting Medium AF1 (Electron Microscopy
Sciences, Hatfield, PA) was applied to prevent bleaching of
the DAPI fluorescent signal. Fluorescence direct counts were
conducted at 100X magnification on an Olympus Bx51 fluo-
rescence microscope. Fields of view were randomly selected
and counted until a minimum of 300 cells/sample were visu-
alized and recorded.

Bacterial and Archaeal Clone Library Construction

DNA was extracted from two LBB-positive cave deposits, Mn
Falls and Mud Trap Falls, located within the primary study
site (CSPC) using a bead beating protocol with the Fast DNA
Spin Kit for Soil (MP Biomedicals, Solon, OH). The con-
centration of extracted DNA was determined using a Nan-
oDrop ND-1000 spectrophotometer (NanoDrop Technolo-
gies, Wilmington, DE). Extracted DNA was used to create a
total of four clone libraries. For Bacteria, one library each was
created from DNA extracted from light and dark material at
the Mn Falls site in CSPC. This site appeared to be highly



active as it was strongly LBB positive and had streamers of
Mn-oxide-rich biofilm material flowing down the cave wall at
the time of sampling. Both dark and light material was sam-
pled in attempt to detect a significant enrichment in one or
more groups that may be implicated in Mn(II)-oxidation.

Small clone libraries were constructed since the main
goal was to evaluate the most abundant OTUs, rather
than rare OTUs, in each sample. Approximately 3 ng
of environmental DNA was used as a template for the
PCR amplification of bacterial DNA using the primer
27F 5′-AGAGTTTGATCMTGGCTCAG-3′ (Lane 1991)
combined with a modified version of 1492R primer 5′-
RGYTACCTTGTTACGACTT-3′ (for Bacteria) (Emerson
and Moyer 2002). Each 25 μL PCR reaction contained, in
final concentrations, 1.25 U AmpliTaq Gold (Applied Biosys-
tems, Carlsbad, CA), 200 μM each primer, 1X PCR Gold
Buffer (Applied Biosystems, Carlsbad, CA), 2 mM MgCl2
Solution (Applied Biosystems, Carlsbad, CA), 200 μM each
dNTP, and 2X BSA (New England Biolabs, Ipswich, MA). A
MJ Mini Personal Thermal Cycler (Bio-Rad, Hercules, CA)
was used for all PCR-amplification reactions. The amplifica-
tion protocol for bacterial clone libraries was as follows: an
initial denaturation of 95◦C for 10 min, followed by 30 cycles
of 94◦C for 5 min, 64◦C for 90 s, 72◦C for 3 min, and a final
extension of 72◦C for 7 min. PCR amplifications were con-
ducted in triplicate, and amplified PCR products were pooled
before purification using a Montage R© PCR Purification Kit
(Millipore, Billerica, MA).

For Archaea, one library was created from DNA ex-
tracted from the Mn Falls and Mud Trap Falls sites. Approx-
imately 3 ng of environmental DNA was used as a template
for the PCR amplification of archaeal DNA using the us-
ing the 109F 5′-ACKGCTCAGTAACACGT-3′ and 912R 5′-
CTCCCCCGCCAATTCCTTTA-3′ primer pair for Archaea
(Lueders and Friedrich 2000). Each 25 μL PCR reaction con-
tained, in final concentrations, 1.25 U AmpliTaq Gold (Ap-
plied Biosystems, Carlsbad, CA), 200 μM each primer, 1X
PCR Gold Buffer (Applied Biosystems, Carlsbad, CA), 2 mM
MgCl2 Solution (Applied Biosystems, Carlsbad, CA), 200 μM
each dNTP, and 2X BSA (New England Biolabs, Ipswich,
MA). The amplification protocol for archaeal clone libraries
is as follows: an initial denaturation of 94◦C for 5 min, fol-
lowed by 35 cycles of 94◦C for 1 min, 54◦C for 1 min, 72◦C
for 90 s, and a final extension of 72◦C for 6 min. PCR am-
plifications were conducted in triplicate, and amplified PCR
products were pooled before purification using a Montage R©
PCR Purification Kit (Millipore, Billerica, MA).

PCR products were cloned into TOPO TA pcr R©2.1 vectors
(Invitrogen, Carlsbad, CA), and plasmid DNA extracted from
transformants using the QIAprep Spin Miniprep Kit (Qiagen,
Valencia, CA) was screened by sequencing using the M13F
(-20) primer. 96 well plates of glycerol stocks were prepared
for each sample site using each primer set and sequenced
using M13F(-20) and M13R(-27) primers. Sequencing was
conducted using a Sanger platform at Beckman-Coulter Ge-
nomics (Danvers, MA). Chimeric sequences were eliminated
from analysis prior to consensus sequence construction. Se-
quences from both bacterial and archaeal libraries were
pooled (creating a ca. 180 sequence bacterial library and 65

sequence archaeal library) for DOTUR analysis in order to
make OTU determinations (Schloss and Handelsman 2005).
Representative sequences for each OTU for Archaea or each
dominant OTU (as defined by two or more sequence rep-
resentatives) for Bacteria were chosen based on sequence
length and quality. For the bacterial dominant OTUs, ad-
ditional sequencing of transformant plasmid DNA was con-
ducted using primers 357F 5′-CCTACGGGAGGCAGCAG-
3′, 926R 5′-CCGYCWATTCMTTTRGT TT-3′, and 1098R
5′-GGGTYKCGCTCGTTGC-3′ to obtain full-length (ca.
1500 bp) SSU rRNA gene sequences. Contigs were assem-
bled using Sequencher sequence analysis software (Version
5.0, Build 7082, Gene Codes Corporation, Ann Arbor, MI).
Good’s nonparametric coverage was estimated using the equa-
tion [1-(n/N)] x 100, where “N” is the total number of clones
evaluated and “n” is the number of singleton OTUs (Good
1953).

For phylogenetic analysis, additional sequences of inter-
est were selected using ARB (Ludwig et al. 2004) and the
NCBI taxonomic database (Johnson et al. 2008). OTU and
additional sequences of interest were aligned using the on-line
SILVA aligner (Pruesse et al. 2007). Phylogenetic trees were
constructed using the PHYLIP software package (Felsenstein
2004) by conducting both neighbor-joining and maximum
likelihood analysis. Clone sequences of archaeal OTUs and
dominant bacterial OTUs were deposited in GenBank under
the accession numbers JN820160-JN820219.

Isolation of Mn(II)-oxidizing Microorganisms on Agar Media

Mn-oxide-rich samples from ferromanganese biofilms, mi-
cronodules, and coatings on rock walls and speleothems were
collected in an attempt to cultivate Mn(II)-oxidizing cave mi-
croorganisms. Samples were transported to the lab on ice and
immediately plated on a variety of media designed to target
the phylogenetically diverse array of Mn-oxidizers. A mod-
ified version of AY media (Santelli et al. 2011) was created
by supplementing the media post-autoclaving with 100 μM
MnCl2. A modified version of Burk’s nitrogen-free medium
(Mohandas 1988) was created to target putative nitrogen-
fixing, Mn(II)-oxidizing microorganisms by substituting an
equimolar concentration of succinic acid, disodium salt for
sucrose as a carbon source and amending the media (post-
autoclaving) with 100 μM MnCl2 and 3.7 mM FeCl3. A novel
media, Nitrate Mineral Salts (NMS), was designed for this
study to target methylotrophic Mn(II)-oxidizers. NMS con-
tains (in g L−1) 1 MgSO4·7H20, 0.14 CaCl2·2H20, 1 KNO3,
0.27 KH2PO4, 0.3 NaH2PO4, 1 mL trace element solution
(containing in mg L−1 1000 EDTA, 400 FeSO4·7H20, 250
CuSO4·5H20, 20 ZnSO4·7H20, 6 MnCl2·4H20, 60 H3BO3, 40
CoCl2·6H20, 2CaCl2·2H20, 4 NiCl2·6H20, 6 Na2Mo4·2H20).
pH of the media was adjusted ca. 7.1–7.2 before autoclaving,
and 15 g agar was added for plates. NMS media was sup-
plemented post-autoclaving with sterile 0.02 M Hepes buffer
pH 7.2, 5 μM ferrous ammonium citrate, 0.2% v/v vita-
min solution for J medium (Tebo et al. 2007), and 100 μM
MnCl2. For agar plates, a 0.05% v/v methanol was added
as a carbon source; a 50:50 CH4(g):air mix was used as



the sole carbon source for liquid media. A new medium,
FMO2, was designed for this study by S.L. Bräuer and con-
tains (in g L−1) 10 mL Major Metals 1 solution (containing
in g L−1 12 NaCl, 1.2 KCl, 5 MgCl2·6H20, 1 KH2PO4, 2
NH4Cl, 1 CaCl2·2H20), 1 mL 1000X Trace Metal 1 Solu-
tion with NTA (containing in g L−1 0.15 CoCl2·6H20, 0.15
ZnCl2, 0.05 H3BO3, 0.02 NiCl2·6H20, 0.01 Na2Mo4·2H20,
0.4 FeCl2·4H20, 0.1 MnSO4·4H20, 3 MgSO4·7H20, 0.1
CaCl2·2H20, 0.01 CuSO4·5H20, 0.18 AlK(SO4)2·12H20, 1.5
NTA), and 0.05 yeast extract. pH of the media was adjusted
to ca. 7.0–7.2 before autoclaving, and either 15 g agar or Gel-
rite gellan gum [an alternative solidifying agent (Hara et al.
2009)] was added for plates. The media was supplemented
post-autoclaving with sterile 0.02 M Hepes buffer pH 7.2,
5 μM ferrous ammonium citrate, 0.2% v/v vitamin solution
for J medium (Tebo et al. 2007), 100 μM MnCl2, and either
10 mM arabinose, 10 mM succinate, or 0.05% casamino acids
as a carbon source (final concentrations). Plates were inocu-
lated by spreading 80 μL of a 1% v/v Mn oxide rich sample
in 0.02M Hepes buffer pH 7.2 on agar-solidified media. All
cultures were incubated in the dark at 10◦C to mimic environ-
mental conditions within caves. Some plates were incubated
under full oxygen conditions, while others were incubated mi-
croaerophilically (roughly 10% atmospheric air in a sealed
environment), with the recognition that oxygen limited envi-
ronments constitute important niches in cave systems (Portillo
and Gonzalez 2009). Mn(II)-oxidation was confirmed in iso-
lates by LBB testing; LBB-positive isolates were re-streaked for
isolation a minimum of three times on the equivalent growth
medium.

Serial Dilutions

Serial dilutions to extinction were conducted in Cellstar 96-
well culture plates (greiner bio-one, Monroe, NC) using three
different media types: FMO2 media with either 10% 2M ara-
binose, 10% 2M succinate, or 10% casamino acids as a car-
bon source. Inocula from the most dilute sample that grew
and produced dark brown/black precipitates was transferred
to the equivalent agar-solidified growth medium and were re-
streaked for isolation a minimum of three times. Mn-oxidation
was confirmed in isolates by LBB testing. All cultures were
incubated in the dark at 10◦C, mimicking environmental con-
ditions within caves.

Identification of Isolates

Once a colony was isolated, a colony PCR reaction
was used to screen the microorganism for phylogenetic
placement using the universal bacterial primer 357F 5′-
CCTACGGGAGGCAGCAG-3′. For screening, each 25 μL
PCR reaction contained final concentrations of 1X PCR
Master Mix (Fermentas, Glen Burnie, MD) and 0.2 μM
each primer (27F and a modified version of 1492R, de-
tailed above). DNA was added to each reaction by touch-
ing an isolated colony with a sterile pipette tip and washing
the tip in the reaction mixture. The amplification proto-
col for screening isolates is as follows: an initial denatura-

tion of 95◦C for 10 min, followed by 30 cycles of 94◦C for
1 min, 55◦C for 90 sec, 72◦C for 3 min, and a final ex-
tension of 72◦C for 7 min. Isolates of interest were cloned
as previously described using TOPO TA pcr R©2.1 vectors
(Invitrogen, Carlsbad, CA), and plasmid DNA containing
the SSU rRNA gene sequence was sequenced using M13F(-
20), M13R(-27), 357F 5′-CTACGGGAGGCAGCAG-3′,
926R 5′-CCGYCWATTCMTTTRAGTTT-3′, and 1098R 5′-
GGGTYKCGCTCGTTGC-3′ primers to obtain a full-length
(ca. 1500 bp) SSU rRNA gene sequence for phylogenetic
placement as described above. Contigs were assembled us-
ing Sequencher sequence analysis software (Version 5.0, Build
7082, Gene Codes Corporation, Ann Arbor, MI). Isolate se-
quences were deposited in GenBank under the accession num-
bers JN820147-JN820159.

Detection of in-situ Microbial Mn-oxidation with Scanning
Electron Microscopy

Environmental samples were examined using scanning elec-
tron microscopy (SEM) to visualize microbial morphologies
associated with ferromanganese deposits. In addition to di-
rect sampling of rock or sediment substrate, polycarbon-
ate 0.45 μm filters were affixed to glass slides with dots of
plumber’s glue and set in various locations in CSPC for a
period of six months or more. Upon collection, slides and
substrate samples were placed in a sterile falcon tube and pre-
served in a 2.5% gluteraldehyde mixture, then dehydrated by
soaking the filters in a series of 50%, 75%, and 85% ethanol
in water solutions, followed by soaking two times in 100%
ethanol. Samples were treated for a minimum of two hours in
each ethanol solution. Samples were then critically point dried
using liquid CO2 in a Polaron critical point dryer and imaged
using a FEI Quanta 200 Environmental Scanning Electron
Microscope with an EDAX Genesis XM energy dispersive
X-ray spectrometer for elemental analysis.

Transmission Electron Microscopy and Elemental Analysis

Mn-oxidizing bacterial cultures were examined using a JEOL
JEM-1400 transmission electron microscope (TEM) equipped
with an Oxford INCA energy dispersive X-ray detector (EDS)
to confirm the presence of Mn oxides associated with bacte-
rial cells. Samples were mounted on Formvar Carbon Type-B,
200 mesh Cu TEM grids (Ted Pella, Redding, CA) by diluting
liquid cultures 1:5 using sterile deionized water and applying
5 μL dilution to each grid. TEM grids were allowed to air dry
in a laminar flow cabinet. This process was repeated a total
of three times, with a total volume of 15 μL of diluted cul-
ture applied to each grid, and then carbon coated. Samples
were initially imaged using transmission electron microscopy
and spot analyzed with EDS to confirm the presence of Mn
deposits. Several samples were selected for elemental map-
ping via scanning transmission electron microscopy (STEM)
to confirm the locations of Mn within the sample. In all cases,
EDS spot analysis (data not shown) demonstrated the pres-
ence of concentrated Mn deposits associated with bacterial
cells.



Table 2. Biogeochemical analyses of ferromanganese deposits located in cave systems within the upper Tennessee River Basin

Sample Site Mn (ppm) Fe (ppm) Mn:Fe Concentration Substrate Geochemistry

Ribbon Rock (W) 284.6 266.8 1.07 Quartz, illite, trace dolomite
River Bank (W) 123.2 275.7 0.45 Quartz, orthoclase, illite, trace dolomite
Weathered Ribbon Rock (W) 125.4 323.8 0.39 Quartz, orthoclase, illite
Mn Chamber (W) 77.4 342.6 0.22 Quartz, trace calcite, minor orthoclase
Dinosaur Cove Popcorn (CSPC) 22.3 124.8 0.18 Calcite
Dinosaur Cove Mud (CSPC) 205.3 343.8 0.59 Nontronite
Watermark (CSPC) 14.3 254.7 0.06 Nontronite
Mn Falls (CSPC) 327.5 361.4 0.91 Nontronite
Dinosaur Cove (CSPC) 10.9 50.1 0.22 Calcite

Mn:Fe concentrations at sample sites were determined by ICP-OES analysis and are reported as an average. Substrate geochemistry, as determined by X-ray
diffraction, is reported when known. Location of sample site is abbreviated below as follows: Worley’s Cave (W), and Carter Saltpeter Cave (CSPC).

Results

Geochemical and Biogeochemical Analyses

All four cave systems (CSPC, Worley’s, Rockhouse, and DBC,
Figure 1) contain a variety of speleothem formations (flow-
stone, dripstone, soda straws, corrosion residue, Figure 2)
and are particularly enriched in ferromanganese oxide de-
posits. The likely source of Fe(II) and Mn(II) necessary for
the formation of these deposits is the bedrock dolomite of the
Knox Dolomite Supergroup. The Knox Dolomite is a lime-
stone, dolomite, and shale sequence with dolomite containing
ca. 88–445 ppm Mn and ca. 1340–7050 ppm Fe, and typical
Mn:Fe ratios of 0.001–0.256 (Montañez 1994).

Weathering and corrosion of the Knox Dolomite bedrock
by infiltration of meteoric water containing carbonic acid pro-
duces a nontronite (smectite-type) clay residuum in addition
to calcite speleothems in all four study sites, including flow-
stones, rimstones, and popcorn-like micronodules (cave coral).
We observe ferromanganese crusts, coatings, and/or biofilms
occurring on all substrate types. Geochemical analyses show
that the concentration of total Mn in these crusts, coatings,
and biofilms ranges from 10.9 ppm–327.5 ppm (Table 2). The
Mn:Fe ratios in cave ferromanganese deposits vary between
cave systems and within cave deposits, ranging from 0.06–1.07
(Table 2). However, no obvious trends have emerged that indi-
cate a possible effect of substrate mineralogy or water content
on Mn:Fe ratios in these deposits. For example, samples taken
from different locations with similar substrate compositions
in Carter Saltpeter Cave show both the second highest (0.91)
and lowest (0.06) Mn:Fe ratios. Notably, the Mn:Fe ratio at
all sample sites, with the exception of CSPC Watermark (Ta-
ble 2), was enriched relative to the average Mn:Fe ratio for
Knox Group rocks in that region (ca. 0.07) as reported by
Montañez (1994). At sites where the Mn:Fe ratio approaches
1 (e.g. Ribbon Rock and Mn Falls), this would represent nearly
an order of magnitude increase above the bulk bedrock ratio.

Quantification of Bacterial and Archaeal Abundance

Our qPCR results (Figure 3) demonstrated that total bacte-
rial SSU rRNA genes in Mn oxide-rich samples from Mn Falls

and Mud Trap Falls (CSPC- Figures 2d and 2e) represented
approximately 9 × 109 cells/g wet weight, a number that was
confirmed via fluorescence direct cell counts. Total bacterial
SSU rRNA genes from other ferromanganese coatings and
crusts (Figure 3) were up to two orders of magnitude lower,
containing an estimated 7 × 107–2 × 109 cells/g wet weight.
Archaeal SSU rRNA gene sequences from cave samples were
estimated to represent from 5 × 106–1 × 108 cells/g wet weight,
with an average of 2.7 × 107 cells/g wet weight in biofilm
samples vs. 3.8 × 107 cells/g wet weight in ferromanganese
coatings and crusts. Archaeal percentages were highest at sev-
eral sample sites within the CSPC and Worley’s cave systems:
Dino Cove (ca. 7%), Ribbon Rock (ca. 6%), Watermark (ca.
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Fig. 3. Real-time qPCR quantification of SSU rRNA gene copy
number of total Archaea and Bacteria in samples from Carter
Saltpeter (CSPC), Rockhouse (R), and Worley’s (W) Caves. SSU
rRNA gene copy number was normalized by 1.77 copies (for
Archaea) and 4.08 copies (for Bacteria) to obtain estimates of
cell abundance. Analyses were conducted in triplicate and error
bars represent standard error.



7%), and Weathered Ribbon Rock (ca. 11%). Overall, bacterial
SSU rRNA gene copies represented on average 95% (89–99%)
of the total estimated microbial (bacterial and archaeal) cell
numbers at each site, while those of Archaea represented on
average 5% (0.2%–11%).

Bacterial and Archaeal Community Structure

In this study, a SSU rRNA clone library survey was conducted
on two ferromanganese-rich deposits located in close physical
proximity within the CSPC system, Mn Falls (Table 2, Figure
2d, OTUs from this sample are prefaced by a F in Figure 4
and Figure 5) and Mud Trap Falls (Figure 2e, OTUs from this
sample are prefaced by a T in Figure 4 and Figure 5). Using
98% sequence similarity to define archaeal operational tax-
onomic units (OTUs), analysis of archaeal libraries revealed
26 unique OTUs out of 65 total sequences from the Mn and
Mud Trap Falls sites. Rarefaction analysis of sequencing data
indicated the development of an asymptotic trend (data not
shown); therefore, sampling efforts were sufficient in captur-
ing the archaeal diversity within the microbial community.
Good’s nonparametic coverage estimator indicated approxi-
mately 66–75% coverage in the archaeal libraires.

Thaumarchaeal sequences were binned into 3 operational
taxonomic units (OTUs/species) (Figure 4), representing ca.
40% of the total archaeal sequences in cave biofilm clone
libraries. According to top BLAST hits, these OTUs were
related to clone sequences from a variety of environments,
from sediment, to the deep subsurface, freshwater systems,
and other ferromanganese deposits. Thaumarchaeal OTUs
represented members of the Marine Group 1 Thaumarchaea
and SAGMA Groups 1 and 2. The dominant Thaumarchaeal
sequence in the present study was OTU TDO2, sharing 98%
identity over a 765 bp alignment to a clone sequence isolated
from freshwater ferromanganous micronodules and sediments
by Stein et al. (2001). Euryarchaeal sequences from clone li-
braries were binned into 23 OTUs (Figure 5), representing ca.
60% of the total archaeal sequences in the clone library data.
OTUs were closely related to other clones isolated from soil,
freshwater and marine systems, and low-temperature environ-
ments. Members of the Deep Sea Hydrothermal Vent Group 6
(DSHV6) represented 29% of the total archaeal sequence types
in cave biofilm clone libraries, and 45% of the Euryarchaeal
sequences.

Bacterial community composition in the CSPC system was
much more diverse than archaeal community composition, a
pattern that is consistent with most environmental surveys,
including caves (Chelius and Moore 2004; Macalady et al.
2006; Macalady et al. 2007; Northup et al. 2003). Using a 97%
identity cutoff, there were 114 unique OTUs out of ca. 180
total sequences. Rarefaction analysis revealed no evidence of
the development of asymptotic trend (data not shown), in-
dicating that sampling efforts were not sufficient to measure
the full extent of diversity within the biofilm communities.
Good’s nonparametric coverage estimator indicated approxi-
mately 53–57% coverage for the bacterial libraries. For phylo-
genetic analysis, data were further reduced into 34 dominant
OTUs representing ca. 100 sequences (Figure 6, Figure 7, and
Figure 8). A dominant OTU was defined as representing two

or more sequences in the clone library, and it is important to
note that this approach would result in an underestimation of
diversity in the clone library as ca. 80 singleton OTUs were
eliminated from downstream phylogenetic analysis.

Dominant bacterial OTUs from relatively small (ca. 96 se-
quences) clone libraries of a cave biofilm represented a diverse
taxonomic array, with sequences from recovered clones in the
libraries representing members of the Bacteroidetes (26%),
Betaproteobacteria (20%), Alphaproteobacteria (15%), Aci-
dobacteria (12%), Gammaproteobacteria (10%), Verrucomicro-
bia (7%), Planctomycetes (5%), Chlorobi (2%), and Deltapro-
teobacteria (2%). Several dominant bacterial OTUs identified
in this study were related to clones and environmental isolates
from freshwater and marine systems, sediment, contaminated
ecosystems, other cave systems, and ferromanganese deposits.
Some (ca. 10%) of the 34 dominant OTUs were related to
known Mn-oxidizers such as Leptothrix [OTU BF2AO7, Fig-
ure 6, 100% identical over a 1,485 bp alignment to Leptothrix
cholodnii SP-6 (Emerson and Ghiorse 1992)] and Pseudomonas
(OTUs BF2B07 and BF2E03, Figure 6). In addition, some (ca.
11%) of the 34 dominant OTUs were related to known Fe-
oxidizers (Leptothrix spp.) or clones isolated from oxidized
iron deposits (OTUs BF2C07 and BF2C10, Figure 8). Com-
bined, 21% of the recovered clone sequences represented by
dominant OTUs were related to known metal-oxidizers or
clones isolated from oxidized metal environments.

Isolation of Mn(II)-oxidizing Microorganisms

Six Mn(II)-oxidizing isolates obtained from CSPC ferroman-
ganese deposits clustered within the Gammaproteobacterial
subphylum and are near members of the genus Pseudomonas,
a common group of known Mn(II)-oxidizing microorganisms
(Table 3, Figure 6). Cultures N4, T4, T2, and N3 were isolated
on a modified version of Burk’s N-free media (Mohandas
1988), although we have not yet established if these isolates
are capable of N2 fixation. Isolate N3 is 97% identical over
a 1,502 bp alignment to OTU BF2E03, and isolates N4 and
T4 are 97% identical (over a 1,181 and 1,473 bp alignment,
respectively) to OTU BF2B07. Isolate Mn Falls 11 is a close
relative (99% identity over a 1,128 bp sequence alignment)
of Pseudomonas putida, a model organism used in the study
of the molecular mechanisms involved in Mn(II)-oxidation
(Geszvain and Tebo 2010).

Two Mn(II)-oxidizing isolates obtained from ferroman-
ganese deposits within CSPC clustered within the Betapro-
teobacteria (Table 3, Figure 6): Janthinobacterium sp. A6 and
Leptothrix sp. G6. Janthinobacterium sp. A6 oxidizes Mn(II)
in liquid culture, and appears to oxidize Mn extracellularly,
since clumps of Mn oxides were loosely associated with cells
(Figure 9). Isolate A6 was obtained from a serial dilution cul-
ture containing 2.5×10–8g wet weight biofilm material. Isolate
A6 oxidized Mn(II) intermittently during maintenance of the
culture, with newly inoculated cultures periodically losing the
capability to oxidize Mn(II). However, the sequenced culture
was oxidizing Mn(II), as confirmed by LBB testing.

Cave isolate Leptothrix sp. G6 oxidizes Mn along the
sheath (Figure 9). This organism is 99% identical over a
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Fig. 7. Neighbor-joining tree inferring the phylogenetic relationship between cultured strains∗ (asterisks) and those found in clone
libraries in Carter Saltpeter Cave, Carter County, TN in this study for sequences clustering in the Bacteroidetes, Chlorobi, and
Actinobacteria. Isolates that oxidize Mn(II) continually are indicated by a +; isolates that oxidize Mn(II) intermittently are indicated
by a ±. Source of isolation is noted immediately before accession number. The number of sequences from each library [Mn Falls Light
(L) and Mn Falls Dark (D)] representing a particular OTU is given in parentheses following the NCBI accession number. Alignments
were created using the on-line SILVA aligner. Dendogram was created using PHYLIP. Bootstrapping values are shown for nodes
that were supported >50% of the time and with maximum-likelihood analysis (data not shown). Aquifex pyrophilus and Thermotoga
maritima were used as outgroups. Branch lengths indicate the expected number of changes per sequence position (see scale bar).



Sedimentary Rock Clone MlZ01 (AB179492) 
Estrogen-Degrading Membrane Bioreactor Biofilm Clone M1-38 (EU015115) 
Farm Soil Clone AKYG980 (AY922082)

Opitutus terrae strain PB90-1 (AJ229235) 

Alterococcus agarolyticus strain ADT3 (AF075271)

Candidatus Xiphinematobacter americani (AF217460)

Aspen Rhizosphere Soil Clone Elev_16S_885 (EF019719) 
Laboratory Membrane Bioreactor Clone MBR-8_LF_BF108 (FM201112) 

Prairie Soil Clone FFCH9506 (EU135531)
Boreal Pine Forest Soil Clone HF_NC_1 (FJ625340) 

Phycisphaera mikrensis strain NBRC 102666 (AB447464)

Planctomyces maris strain DSM 8797T (AJ231184) 
Planctomyces brasiliensis strain DSM 5305T (AJ231190)

Subsurface Radioactive Thermal Spring Clone OTU27/APA (AM902619) 
Rice Paddy Field Soil Clone 1_B7 (EU589258) 

Phosphorous Removal Ecosystem Clone PH05-HE93 (AF314425) 
Tar-Oil Contaminated Aquifer Sediment Clone D10_25 (EU266795)

Green Bay Ferromanganous Micronodule Clone MNB2 (AF293011)
Riparian Iron-Oxidizing Biofilm Clone 3BR-10F (EU937865)

Roaring River, Mammoth Cave, KY Clone MACA-RR33 (GQ500765) 
Solibacter ustasis Ellin6076 (CP000473) 

PCB Contaminated Soil Clone Ihad15 (DQ648914) 
Simulated Low Level Radioactive Waste Site Clone WC1-a88 (GQ263766) 

Marathonas Reservoir Clone A07-44-BAC (GQ340083) 

Thermotoga maritima (AJ401021)
Aquifex pyrophilus (M83548) 

Shallow Submarine Hotspring Microbial Mat Clone pltb-vmat-39 (AB294947) 
Contaminated Coastal Sediment Clone 59 (FM242442)

Bdellovibrio starri (AF084852)

Bdellovibrio sp. J55 (AF084859)  
Apalachicola Bay Clone YE-3D (DQ659768)

South Atlantic Ocean Cape Basin Clone Ucd1571 (AM997610) 

Sewage Treatment Plant Clone H9 (AF234706) 
Drinking Water Distribution System Clone J73 (GQ389026)

Zoige Alpine Wetland Clone ZWB2-10 (FJ801182) 
Soil Clone AK1DE1_08B (GQ396986) 

Hirschia baltica strain DSM 5838T (AJ421782) 
Estrogen-Degrading Membrane Bioreactor Biofilm Clone M3B31 (FJ439862)

Lake Sediment Clone SLB728 (DQ787731) 
Rhodospirillaceae bacterium LM22 (FJ455532)  

Oligotropha carboxidovorans strain S23 (AB099659)  
Bradyrhizobiaceae bacterium SG-6C (GU324241)  

Alps Dolomite Rock Clone Dolo_08 (AB257634) 
Sphingomonas sanxanigenes strain NX02 (DQ789172) 

Arvadi Spring Clone 13-90-ArvAB (AB425062) 
North Wisconsin Humic Lake Clone CrystalBog5F2 (AY792292)

Drinking Water Facility Clone CR-Cl17 (DQ295907) 

Sphingomonas suberifaciens (D13737) 
Riparian Iron-Oxidizing Biofilm Clone 3BR-10BB (EU937905)

Fucophilus fucoidanolyticus (AB073978) 

98

88
100

80

73 82
100

100

97

100

87

92

100

100

100

57

100

79

100

100

100

100

100

65

86
100

66

80

100

100
85

64

100

100

100

97

100
100

100
100

100
100

100
100

100

0.05

Alphaproteobacteria

Planctomycetes

Verrucomicrobia

Acidobacteria

Deltaproteobacteria

BLE05 (JN820219) (2L)

BF2C08 (JN820195) (2L, 1D)

BF2B04 (JN820201) (2D)

BLE07 (JN820192) (2L, 1D)

BF2A03 (JN820206) (2D)

BF2C10 (JN820186) (6L, 3D)

BLD08 (JN820193) (2L, 1D)

BLB09 (JN820217) (2L)

BF2F10 (JN820198) (1L, 2D)

BF2D06 (JN820208) (2D)

BF2H04 (JN820189) (1L, 3D)

BLA07 (JN820216) (2L)

BF2E05 (JN820213) (1L, 1D)

BF2C07 (JN820204) (2D)

Fig. 8. Neighbor-joining tree inferring the phylogenetic placement of SSU rRNA gene sequences obtained from biofilms found in
Carter Saltpeter Cave, Carter County, TN in this study for sequences clustering in the Alpha- and Deltaproteobacteria as well as
Planctomycetes, Verrucomicrobia, and Acidobacteria. The number of sequences from each library [Mn Falls Light (L) and Mn Falls
Dark (D)] representing a particular OTU is given in parentheses following the NCBI accession number. Alignments were created using
the on-line SILVA aligner. Dendogram was created using PHYLIP. Bootstrapping values are shown for nodes that were supported
>50% of the time and with maximum-likelihood analysis (data not shown). Aquifex pyrophilus and Thermotoga maritima were used
as outgroups. Branch lengths indicate the expected number of changes per sequence position (see scale bar).



Table 3. Media used to isolate Mn(II)-oxidizing bacteria in this study

Media Isolate Phylogenetic Affiliation

Modified AY Media Arthrobacter sp. L Actinobacteria
Modified Burk’s Nitrogen-free Media Pseudomonas sp. N3 Gammaproteobacteria

Pseudomonas sp. N4 Gammaproteobacteria
Pseudomonas sp. T2 Gammaproteobacteria
Pseudomonas sp. T4 Gammaproteobacteria

FMO2 (arabinose as a carbon source) Flavobacterium sp. E8 Bacteroidetes
Janthinobacterium sp. A6 Betaproteobacteria

FMO2 (casamino acids as a carbon source) Flavobacterium sp. MTFA Bacteroidetes
FMO2 (casamino acids as a carbon source

with Gelrite gellan gum as a solidifying
agent)

Pseudomonas sp. 9 Gammaproteobacteria

FMO2 (succinate as a carbon source) Leptothrix sp. G6 Betaproteobacteria
Pseudomonas sp. Mn Falls 11

Nitrate mineral salts Acinetobacter sp. V1 Gammaproteobacteria
Flavobacterium sp. V2 Bacteroidetes

All media used agar as a solidifying agent, unless otherwise noted. Media recipes are described in detail in the methods.

1,485 bp alignment to the Mn-oxidizing, sheath-forming Lep-
tothrix cholodnii (formerly L. discophora) SP-6 (Emerson and
Ghiorse 1992), and it was obtained from a serial dilution cul-
ture containing 2.5 × 10–8 g wet weight deposit material. Lep-
tothrix-like morphologies, as evidenced by straight, hollow
sheaths coated in Mn and Fe, were detected in in-situ based

glass slide incubations (Figures 10a and 10b) at the Mud Trap
Falls seep and in SEM images of sample material from DBC’s
Top of V site (Figure 10c).

Two Mn(II)-oxidizing isolates obtained from ferro-
manganese deposits within CSPC clustered within the
Bacteroidetes (Figure 7): Flavobacterium sp. E8 and

Fig. 9. TEM microscopy of the sheath-forming isolate Leptothrix sp. G6 and Janthinobacterium sp. A6. TEM micrographs (scale bars
represent1 μm) demonstrated the presence of electron-dense Mn deposits associated with bacterial cells. STEM P and Mn elemental
maps (scale bars represent 800 nm) revealed the location of phosphorous and manganese within bacterial cells.



Fig. 10. SEM images (a,b) of a polycarbonate filter mounted on a glass slide and incubated for 6 months in situ at the top of the Mud
Trap Falls seep (CSPC) revealed Leptothrix-like microbial morphologies. SEM micrograph of Daniel Boone Caverns Top of V site
(c) revealed a putative Leptothrix; however, the hollow structure of the putative sheath was not verified. EDS spectra of the filament
is enriched in Fe and Mn as compared to EDS spectra of the background material.

Flavobacterium sp. MTFA, which oxidize Mn(II) in liquid cul-
ture (Table 3). Members of this genus have previously been
reported to oxidize Mn(II) (Ford and Mitchell 1990; Neal-
son 1978; Santelli et al. 2010). Flavobacterium sp. E8 is 98%
identical over a 1,387 bp alignment to the Mn(II)-oxidizing
Flavobacterium sp. DS2psk4b, which was isolated from coal
mine drainage (Santelli et al. 2010). Isolate E8 was obtained
from a serial dilution culture containing 2.5×10–10g wet weight
biofilm material.

A single isolate clustering within the Actinobacteria,
Arthrobacter sp. L (Table 3, Figure 7), was obtained from
a ferromanganese deposit located within Daniel Boone Cav-
erns. Arthrobacter isolate L oxidizes Mn(II) in liquid culture;
members of this genus have been reported to demonstrate this

capability (Schweisfurth et al. 1978). Arthrobacter sp. L is 98%
identical over a 1,457 bp alignment to its closest cultivated rel-
ative, Arthrobacter methylotrophus, a facultative methylotroph
isolated from an enrichment culture containing dimethylsul-
fone as the sole source of carbon and energy (Borodina et al.
2000, 2002). Interestingly, in addition to Mn(II)-oxidizing mi-
croorganisms, two putative methylotrophic Mn(II)-oxidizers
were isolated in this study: a member of the Gammaproteobac-
teria, Acinetobacter sp. V1 (Table 3, Figure 6), and a member
of the Bacteroidetes, Flavobacterium sp. V2 (Table 3, Figure 7).
Both isolates were capable of growth in liquid NMS media,
which was designed to target methanotrophic Mn oxidizers
by using methane as a sole carbon source. However, methan-
otrophy has not yet been confirmed in these strains.



Discussion

The Cave Geochemical Environment

Iron and manganese are the fourth and fifth most abundant el-
ements in the Earth’s crust, respectively (Edwards et al. 2004;
Tebo et al. 2007), where Fe outweighs Mn by a ratio of ca.
58:1 in the upper continental crust (Turekian and Wedepohl
1961; Wedepohl 1995). The predominance of Fe over Mn in a
variety of natural systems is well documented in studies of ma-
rine (Edwards et al. 2004; Nitahara et al. 2011) and freshwater
systems (Johnson et al. 2012; Stein et al. 2001). However, in
cases where the concentration of Mn is equal to or outweighs
the concentration of Fe (Gradziński et al. 1995; Krumbein
and Jens 1981) or where secondary mineral deposits are en-
riched in metal concentration relative to substrate geochem-
istry (Cunningham et al. 1995; Northup et al. 2003; Spilde
et al. 2005, 2006), biomineralization processes are invoked as
a causal factor in the formation of Mn-enriched geochemical
environments.

These microbial biomineralization processes contribute to
ferromanganese oxide accretion in this study, where Mn con-
centrations were enriched relative to bedrock concentrations
and where the Mn:Fe ratio approached 1:1, such as Worley’s
Ribbon Rock and CSPC Mn Falls (Table 2). A Mn:Fe ratio
of ca. 1:1 in cave ferromanganese deposits is a common ratio
found in deep, oligotrophic systems in the southwest United
States such as Lechuguilla and Spider Caves (Northup et al.
2003; Spilde et al. 2005). Previous research demonstrates the
role of microsite geochemistry in establishing environmental
niches (Engel et al. 2010; Macalady et al. 2008; Rossmassler
et al. 2012), structuring microbial communities (Barton et al.
2007; Goldscheider et al. 2006; Shabarova and Pernthaler
2010), and influencing mineral precipitation (Frierdich et al.
2011) and composition (Post 1999; White et al. 2009) in sub-
surface karst systems. However, the role of microsite geochem-
istry on biomineralization in shallow, epigenic cave systems
may be masked by agricultural, anthropogenic, and soil geo-
chemical inputs.

Ferromanganese Biofilm Community Composition

In the present study, qPCR data indicated that bacterial cells
represented on average 95% of the total microbial cells at sam-
ple sites. Most notably, the range of detection of bacterial cell
numbers in our study (7.5 × 107 to 9.8 × 109 cells/mL) was
two to four orders of magnitude higher than numbers typi-
cally reported within similar, pH neutral cave systems (Barton
et al. 2006; Northup et al. 2000). In addition, Mn oxide-rich
biofilm samples were estimated to contain 9.85 × 109 total
microbial cells/g wet weight, a quantity that is two orders of
magnitude greater than studies of ferromanganese deposits
in Spider and Lechuguilla Caves (Spilde et al. 2005). Deep
cave systems with limited energy supply and minimal human
impact are considered to be oligotrophic environments, and
recent research indicates that they are low-biomass environ-
ments with high levels of microbial diversity (Northup and
Lavoie 2001; Barton et al. 2004; Boston et al. 2006; Hunter
et al. 2004). The total cell count reported in the present study

of surface influenced shallow caves is higher than that found
in deeper, oligotrophic caves; however, it is not outside the
range of numbers reported in studies of other environmental
systems. Microbial cell abundance has been estimated to range
from 1.29 × 109 to 7.6 × 1010 cells/mL in marine sediments
(Nitahara et al. 2011), cold seep microbial mats (Grünke et al.
2011), arable soil (Torsvik et al. 2002), and filamentous micro-
bial mats in sulfidic springs (Engel et al. 2004).

At the time of sampling, the CSPC Mn Falls site was
thought to be heavily impacted by organic input from sewage
effluent (Carmichael et al. 2013). Bacterial biomass in cave
pools has been shown to increase proportionally with organic
carbon input (Simon and Buikema Jr. 1997), and cell concen-
trations in the range of 1 × 109 cells/mL have been reported in
sewage (Fierer and Lennon 2011). Therefore, high cell counts
at sites within the CSPC system could be indicative of high
levels of anthropogenic impact (e.g., nutrient loading), due in
part to the shallow, surface-influenced depths of these caves.
In fact, clone library data corroborate this idea as many of
the clones obtained here were related to sequences obtained
from fecal contaminated environments (see Figure 6, OTUs
BF2B07, BF2E04, BF2F03, BLD10, and BLB01). However,
it is important to note that if the environment has selected
for microbes adapted to high nutrient loading, it is likely that
many of these organisms may have above average SSU rRNA
operon copy numbers (Klappenbach et al. 2000). Therefore, it
is possible that the total cell number has been overestimated.

In general, a high degree of diversity within systems is
supported by microbial metabolic versatility (Whitman et al.
1998) and the development of mutualistic associations in
biofilm communities leading to the interdependency of or-
ganisms within the community (Fierer and Lennon 2011).
The SSU rRNA data from the present study are suggestive
of the presence of a variety of microbial metabolic strategies
within the CSPC Mn Falls and Mud Trap Falls communi-
ties, as clone sequences obtained in this study are closely re-
lated to methanogens (OTU G01, Figure 5), hydrocarbon de-
graders (OTU BF2E03, Figure 6), ammonia-oxidizers (OTU
BF2F03, Figure 6), denitrifiers (OTU BLB01, Figure 6), and
iron or manganese-oxidizers. Several lines of evidence from
the SSU rRNA molecular-based survey of CSPC suggest that
metal-oxidation plays an important role in the formation of
ferromanganous biofilms within the cave system.

Members of the Proteobacteria (47% of the sequences rep-
resented by dominant OTUs in the present study) are common
constituents of cave clone libraries and have been detected in
RNA-based surveys as metabolically active members of cave
microbial consortia (Portillo et al. 2008). Molecular work from
the present study indicates that Leptothrix are present in de-
tectable numbers within the CSPC Mn Falls biofilm commu-
nity. In fact, 6% of the total library sequences (from both
libraries) were represented by OTU BF2A07 (Figure 6), sug-
gesting that both samples included live cells from the growing
edge of the Leptothrix sheaths (Fleming et al. 2011). Addition-
ally, the organisms representing these OTUs were phylogeneti-
cally related (99% identity over a 1,489 bp sequence alignment)
to the Leptothrix strain isolated from a high dilution suggest-
ing that they play an important role in the biomineralization
of Mn in southern Appalachian cave systems. Leptothrix spp.



are known to be capable of both Fe and Mn oxidation (Spring
2006; van Veen et al. 1978), and in situ slides of Leptothrix
from CSPC Mud Trap Falls demonstrate both Mn and Fe ox-
idation, thus confirming the role of microbes in the formation
of cave ferromanganese biofilms and crusts.

Although based on small sample size, molecular analy-
ses indicate that the most abundant and detectable popu-
lations in CSPC ferromanganese deposits (e.g., Leptothrix,
Pseudomonas, and Flavobacterium-related organisms) are dis-
tinct from the populations identified by Northup et al. (2003)
in a survey of the microbial communities inhabiting ferroman-
ganese deposits in Lechuguilla and Spider Caves, which in-
cluded taxa related to Hyphomicrobium, Pedomicrobium, Lep-
tospirillum, Stenotrophomonas, and Pantoea-related organ-
isms. These two distinct microbial communities may exhibit
a level of functional redundancy in Fe- and Mn-
biomineralization capacity within the two cave systems. Ev-
idence from this study indicates that shallow cave systems
may harbor Mn-oxidizing consortia with a unique signature
in comparison to other cave systems, although deeper sequenc-
ing efforts may reveal more overlap.

Questions exist regarding the nature of these community
differences, and whether these differences relate to differences
in nutrient input in anthropogenically impacted vs. pristine
cave systems, or simply the fact that these two cave systems
differ in both regional geology and hydrology. Lechuguilla
Cave has been described as deep and oligotrophic (Northup
et al. 2003), whereas a parallel study of CSPC indicates that it
has been severely impacted by nutrient loading from the sur-
face (Carmichael et al. 2013). Future research should attempt
to elucidate the cause of these observed differences, with an
initial focus on the increased role of surface impact in shallow
vs. deep cave systems.

Archaea, like Bacteria, are ubiquitous within the envi-
ronment (DeLong 1992) and play a key role in the mainte-
nance of biogeochemical cycles (Goldscheider et al. 2006). Yet,
Archaea remain understudied members of microbial com-
munities, particularly in caves. The role of Archaea in the
formation and transformation of cave ferromanganese de-
posits is debatable, although molecular evidence of Archaea in
clone libraries generated from cave ferromanganese deposits
(Northup et al. 2003) has led some investigators (Tebo et al.
2005) to speculate regarding the possible existence of a new
class of Archaea capable of Mn-biomineralization.

In the present study, Archaea represented ca. 5.0% of
the total microbial population in a cave biofilm and ferro-
manganese coating. Archaeal community diversity was rela-
tively low in comparison to bacterial community diversity;
however, this trend is consistent with some cave systems
(Macalady et al. 2007; Legatzki et al. 2011), marine ferroman-
ganese crusts (Nitahara et al. 2011), and some other environ-
ments (DeLong 1992). The archaeal community in this study
was dominated by members of Thaumarchaea, primarily Ma-
rine Group 1 OTU TDO2. This group accounted for 37%
of the total archaeal diversity in the library, and 92% of the
Thaumarchaeal diversity. At least one clone from the SAGMA
groups 1 and 2 of the Thaumarchaea was also recovered and
this clone (TG02) shared 92% identity to one recovered from
Lechuguilla Cave, clone CV1B4 (Northup et al. 2003, and

Figure 4). Members of the Rice Cluster V and Deep Sea Hy-
drothermal Vent Group 6 (DSHV6) Euryarchaea were the
second and third most dominant archaeal groups, represent-
ing 32% and 29% respectively of the total archaeal diversity
captured in this study.

Of the six DSHV6 OTUs identified in this study, four
(FD02, FF04, TD04, and TD06) were less than 95% simi-
lar to their closest relatives as determined by BLAST analysis.
This high degree of divergence (Amann et al. 1995) indicates
that these sequences represent novel lineages unique to CSPC
or other similar systems. Several findings emphasize the need
to ascertain the functional role of Archaea in cave biogeo-
chemical cycling: 1) the dominance of sequences related to
Thaumarchaeal OTU TD02 in the CSPC Mn(II)-oxidizing
biofilm community, 2) recent evidence from other studies of
metabolically active Thaumarchaea in similar cave systems
(Gonzalez et al. 2006), and 3) the recovery of several novel
Euryarchaeal lineages in CSPC.

Mn-biomineralization in Cave Ferromanganese Deposits

The present study is significant due to the broad taxonomic
array of bacteria isolated from cave ferromanganese deposits
that demonstrate the ability to oxidize Mn(II) in culture.
The isolation of a Janthinobacterium sp. capable of Mn(II)-
oxidation represents the first report of a Mn(II)-oxidizing
member from a cave, although members of this genus have
been both detected in clone libraries, as well as isolated from
desert varnish (Northup et al. 2010). This finding expands the
phylogenetic diversity of known cave Mn-oxidizers to include
new genera and provides further support for the importance
of this process to the microbial cell. In addition, this study
represents the first report of cave isolates among the gen-
era Flavobacterium and Arthrobacter that also demonstrated
Mn-biomineralization capacity in vitro. Flavobacterium (Ikner
et al. 2007) and Arthrobacter (Ikner et al. 2007; Laiz et al. 2000)
species have been isolated from cave systems in prior studies,
although the Mn-biomineralization capacity of these isolates
was not established.

Iron and manganese oxidizing Leptothrix spp. are com-
monly isolated from freshwater systems and are particularly
abundant at redox interfaces (Spring 2006; van Veen et al.
1978). However, Leptothrix spp. typically lose their sheath-
forming capacity in culture, so isolation of a close relative of
the sheath-forming strain SP-6 from a high dilution is un-
usual and noteworthy. The isolation of a Mn(II)-oxidizing
Leptothrix from CSPC represents the first reported isolation
of this organism from a cave in over twenty years (Moore 1981;
Peck 1986), although recent work has demonstrated the pres-
ence of Leptothrix-like morphologies in caves using scanning
electron microscopy (de los Rı́os et al. 2011; Florea et al. 2011;
Frierdich et al. 2011). In-situ based cultivation efforts from this
study (Figures 10a and 10b) demonstrate that Leptothrix spp.
are actively oxidizing Mn in the field, corroborating in-vitro
cultivation results. Combined data from this and other studies
suggests that Leptothrix spp. may be widespread in epigenic
cave systems. Further, results demonstrate that Mn-oxidizing



Leptothrix spp. are particularly abundant and active in our
study sites.

Over 30 different metal oxide and hydroxide minerals can be
found in caves (Hill and Forti 1997) though it is important to
note that not all black or dark brown deposits in caves are Mn
oxides (Gázquez et al. 2012; Hill 1982) and it is unlikely that
all are formed by microbes. However, Mn-oxidizing microbes
have been shown to produce several of the Mn oxide min-
erals (such as birnessite and todorokite) commonly found in
caves (Frierdich et al. 2011; Gadd 2007; Northup and Lavoie
2001; Santelli et al. 2010; Spilde et al. 2005). The isolation
of three Mn(II)- biomineralizing organisms from high dilu-
tions (2.5×10–8 g wet weight and 2.5×10–10 g wet weight) is
suggestive of the environmental relevance of these genera (Jan-
thinobacterium, Leptothrix, and Flavobacterium) in the forma-
tion of cave ferromanganese deposits in the upper Tennessee
River Basin. The diversity of isolates with inferred biominer-
alization capacity discovered in this study, combined with evi-
dence of in situ Mn-oxidation by Leptothrix spp. demonstrates
the importance of these organisms in cave biogeochemical
cycles.

Conclusions

The present study represents the first geomicrobiological anal-
ysis of ferromanganese deposits within the cave-rich, yet un-
derstudied southern Appalachian karst system. SSU rRNA
based molecular surveys at Mn-enriched sites reveal the ge-
netic potential for Mn-biomineralization within these de-
posits. Biomineralization capacity was inferred via culture-
dependent surveys, which resulted in the isolation of a broad
taxonomic array of Mn(II)-oxidizing bacteria from cave ferro-
manganese deposits. Combined molecular, cultivation-based,
and in situ-based evidence demonstrate that Mn(II)-oxidizing
bacteria are abundant and environmentally relevant species
in cave ferromanganese deposits. Further, at the present se-
quencing depth, results suggest that microbial communities
contributing to the accretion of ferromanganese deposits in
these shallow cave systems share little taxonomic similarity
with those in deeper cave systems. The Mn-oxidizing bacteria
identified here likely play a role in mediating cave biogeochem-
ical cycles, forming and transforming the cave mineral envi-
ronment, and are vital contributors (via functional diversity)
to the maintenance of cave microbial consortia (Warren and
Kauffman 2003) within these fragile and unique cave systems.
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